Page 1 Christian MAIRE EduKlub S.A. Tous droits de l’auteur des œuvres réserv
Page 1 Christian MAIRE EduKlub S.A. Tous droits de l’auteur des œuvres réservés. Sauf autorisation, la reproduction ainsi que toute utilisation des œuvres autre que la consultation individuelle et privée sont interdites. Physique ELECTROCINETIQE - ELECTRONIQUE PROBLEME - PROBLEME D’ ELECTRONIQUE 2 - • • • • ENONCE : « Quelques applications d’un circuit multiplieur » Introduction : on donne ci-dessous le schéma fonctionnel d’un circuit multiplieur ( ) x t ( ) y t ( ) s t S 1 E 2 E Pour un opérateur multiplieur sans défaut, la relation entrée/sortie est donnée par: ( ) ( ) ( ) s t k x t y t = × × Rq : pour les applications numériques, on prendra 1 0,1 k V − = I. Détection quadratique • On envisage la multiplication d’un signal par lui-même, puis le filtrage par un filtre passe-bas de fréquence de coupure « correctement » choisie : S 1 E 2 E ( ) x t ( ) s t filtre passe-bas C f ( ) y t 1.1) Montrer que le montage précédent permet d’accéder au carré de la « valeur efficace vraie » du signal ( ) x t , soit : 2 2 2 0 1 ( ) ( ) T eff t X x t x t dt T = = ×∫ Rq : cette notion est à relier à celle de « puissance moyenne d’un signal » 2( ) moy t P K x t = (ex : effet Joule, où 2 ( ) ( ) J P t Ri t = ; vecteur de Poynting pour une OPPM dans le vide : 2 0 E c µ Π = ! ) 1.2) On s’intéresse au cas suivant : ( ) cos( ) x t a t ω = , avec 5 et 1 2 a V f KHz ω π = = = ; le filtre passe-bas est un simple circuit RC ⇒ proposer des valeurs pour R et C , en justifiant les choix retenus. Page 2 Christian MAIRE EduKlub S.A. Tous droits de l’auteur des œuvres réservés. Sauf autorisation, la reproduction ainsi que toute utilisation des œuvres autre que la consultation individuelle et privée sont interdites. Physique ELECTROCINETIQE - ELECTRONIQUE PROBLEME II. Mesure d’impédances par détection synchrone 2.1) Circuit déphaseur ( ) x t R R R C ( ) y t − + ∞ L' AO est idéal et fonctionne en régime linéaire a) Déterminer la fonction de transfert du montage b) Pour quelle valeur de a-t-on un déphasage de ? RCω / 2 ϕ π = − 2.2) Convertisseur courant-tension 0 R Z I 1 V u V − + ∞ est une impédance à déterminer (voir paragraphes suivants). L'A.O est parfait et fonctionne en régime linéaire. est une résistance connue . Question : que représentent les tensions et ? 1 V u V 0 R Z R jX = + 2.3) Détection de la partie réelle R S 1 E 2 E filtre passe-bas C f convertisseur courant-tension multiplieur 1( ) v t ( ) u v t ( ) s t V • Soit : 1 1 ( ) cos( ) v t V t ω = , avec 1 V connue. • En supposant le filtrage parfait, exprimer V en fonction de 1 0 , , et k V R R ; en déduire que la mesure de V permet d’accéder à celle de R , partie réelle de l’impédance Z inconnue. 2.4) Détection de la partie imaginaire X En utilisant le circuit déphaseur de la question 3.1), proposer une modification à apporter au montage précédent permettant la mesure de X , partie imaginaire de l’impédance Z . Page 3 Christian MAIRE EduKlub S.A. Tous droits de l’auteur des œuvres réservés. Sauf autorisation, la reproduction ainsi que toute utilisation des œuvres autre que la consultation individuelle et privée sont interdites. Physique ELECTROCINETIQE - ELECTRONIQUE PROBLEME III. Modulation d’amplitude • On reprend le circuit multiplieur avec les notations suivantes : S 1 E 2 E ( ) P u t ( ) m u t ( ) S u t 0 ( ) cos( ) m m m u t U A t ω = + ( ) cos( ) , avec P P P P m u t A t ω ω ω = " 0 m A m U = • ( ) m u t est appelé « signal modulant », ( ) P u t est le « signal porteur » ou « porteuse », et m est le « taux de modulation ». 3.1) Déterminer les trois pulsations (ou les trois fréquences) que comporte le signal modulé ( ) S u t ; quelle est l’importance relative de l’amplitude de ces trois composantes ? 3.2) Représenter sommairement ( ) S u t (on pourra prendre 10 P m ω ω × # ) dans 2 cas : 1 m ≺ , puis 1 m % . Dans ce dernier cas, la partie positive de « l’enveloppe » de ( ) S u t est-elle égale à la composante alternative de ( ) m u t , soit &( ) cos( ) m m m u t A t ω = ? IV. Démodulation d’amplitude 4.1) Détecteur de crête (ou d’enveloppe) • On considère le circuit suivant : ( ) e u t ( ) s u t D R C D est une diode, considérée comme idéale (tension de seuil nulle et résistance interne nulle). On choisit la constante de temps telle que: τ 1 1 ( avec: ) 2 m p m m p m T RC T f f f ω τ π = = = = ' ' • ( ) ( ) ( ) e m p u t k u t u t = × × est le signal modulé du paragraphe précédent. • Question : montrer, sans développements calculatoires, que la tension ( ) s u t est pratiquement égale à &( ) cos( ) m m m u t A t ω = , d’autant mieux que la condition p m ω ω " est réalisée ; cette démodulation par détection d’enveloppe fonctionne-t-elle pour 1 m % ? 4.2) Détection synchrone • On utilise un deuxième circuit multiplieur, au niveau du démodulateur, selon le schéma suivant : S 1 E 2 E filtre passe-bas C f multiplieur ( ) e u t 0( ) u t ( ) s u t ( ) s v t Page 4 Christian MAIRE EduKlub S.A. Tous droits de l’auteur des œuvres réservés. Sauf autorisation, la reproduction ainsi que toute utilisation des œuvres autre que la consultation individuelle et privée sont interdites. Physique ELECTROCINETIQE - ELECTRONIQUE PROBLEME • ( ) ( ) ( ) e m p u t k u t u t = × × est le signal modulé du paragraphe IV. 0 0 ( ) cos( ) p u t U t ω = est une tension délivrée par un « oscillateur local » (au niveau du démodulateur) de même fréquence p f que la porteuse. a) Déterminer les cinq composantes du signal ( ) s u t : une composante continue, « l’information » basse fréquence (B.F) m f , trois composantes de haute fréquence (H.F). b) Comment choisir la fréquence de coupure 1 2 C f RC π = du filtre pour que la tension ( ) s v t ne conserve que l’information B.F ? (cette composante sera superposée à la composante continue, que l’on pourra elle-même filtrer très facilement, par exemple grâce à un condensateur placé en série). c) Ce type de détection fonctionne-t-il pour 1 m % ? Quel en est l’intérêt ? Pourquoi parle-t-on de détection synchrone ? V. Boucle à verrouillage de phase • En pratique, « l’oscillateur local » (au niveau du poste de réception) ne peut être rigoureusement synchrone avec la porteuse (générée par l’émetteur radio), à cause des fluctuations de fréquence ou de phase de cet oscillateur local ou même de la porteuse : les deux oscillateurs présentent alors un déphasage instantané ( ) t ϕ évoluant lentement au cours du temps. • Pour remédier au problème occasionné par ce déphasage, on réalise un système bouclé (en anglais : « Phase Lock Loop » ou « P.L.L » comme on peut le voir sur certains récepteurs radio) : filtre passe-bas filtre passe-bas déphaseur oscillateur contrôlé en tension ( ) e u t ' 1 ( ) ( ) ( ) e e u t k u t v t = × × 1( ) v t 2( ) v t 2 ( ) ( ) e k u t v t × × ( ) v t ( ) s v t réglage fréquence "moyenne" de l'O.C.T ( ) p f • Le signal à démoduler est toujours de la forme : ( ) [1 cos(2 )] cos(2 ) e e m p u t U uploads/s3/ p-pb02-40-cm-pdf.pdf
Documents similaires










-
28
-
0
-
0
Licence et utilisation
Gratuit pour un usage personnel Attribution requise- Détails
- Publié le Apv 25, 2021
- Catégorie Creative Arts / Ar...
- Langue French
- Taille du fichier 0.0998MB